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Abstract. There were formulated two general approaches to the problem under considera-
tion indicating the experimental data sources. Mathematical symbols were introduced to 
denote each plant part and describe its function. There was constructed a discrete two – 
dimensional dynamical system that depicted Scots pine growth process followed by mak-
ing suitable assumptions on its components. It has been found that this system is an itera-
tion sequence of certain area transformation which served as the basis for the dynamical 
system development. Consequently, several important results like theorems, comments 
and charts were obtained. The obtained research results are related to variations of total 
dry weight Mn that grows exponentially, while linearly for n large enough. It was also 
demonstrated that the proportion of assimilatory to non assimilatory parts λ ̅ tends to the 
calculated stationary point λ1. 
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STUDY OBJECTIVE 

The research objective is the modeling of growth process of Scots pine seedlings, 
whose effectiveness will be measured by changes in dry matter quantity, dependent on 
light intensity. 

INTRODUCTION 

Recently, quantitative studies of plant growth have become a matter of high interest. 
However, application of some popular growth functions used for both, plant and animal 
is not sufficient to perform its reliable analysis. While animals increase their body 
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weight by consumption of feed in a form of organic matter, plants facilitate their growth 
through a process occurring during photosynthesis. So, although plant growth relies on 
its all growing parts, a role of assimilatory organs is crucial due to significance of pho-
tosynthesis products partitioning into assimilatory and non-assimilatory parts. 

Defining the problem in this way provides a reasonable simplicity to obtain effective 
analysis of this matter. 

There are two basic research approaches to this problem, the first one subject to such 
factors like water, carbon dioxide, etc., and the other focused on productivity of assimi-
latory organs and partitioning of photosynthesis products into assimilatory and non-
assimilatory parts. Importantly, the first approach is not satisfying in the efficiency 
because of the weather conditions that can change promptly so as a result, the second 
one has been taken into account.  

The modelling of Scots pine growth process was based on the experimental data of 
accumulated mass and its distribution in small seedlings of this plant. 

MATERIAL AND METHODS 

The major mathematical tool employed for modelling the plant growth is the dis-
crete two dimensional dynamical system. To match the model with the experimental 
data, the least squares method was used. The data were obtained upon the observation of 
Scots pine seedlings in the Laboratory of Physiomics and Crop Design, the Warsaw 
University of Life Sciences. 

Let Wn and Vn denote dry matter of assimilatory and non-assimilatory parts, respec-
tively. 

It was found that the whole dry matter of plant was Mn = Wn + Vn and proportion of 

both parts λn 
n

n

V

W
  and that Mn, λn > 0. 

It was assumed [Szlenk and Żelawski 1985] that dynamics of plant growth process 
in time is depicted by the following differential equations system: 
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where: α(Wn) – a decreasing continuous function describing the pine needle length in n 
– the period of time, 

δ  [0, 1] – describes influence of weather conditions on λn(δ = const), 
β(λn, δ) – a decreasing continuous function with relation to λn. 

The above two functions show the following properties: 
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Consequently, α(Wn)Wn denotes the quantity of material produced by Wn in n – the 
period of time. β(λn) indicates the amount of newly produced material used for assimila-
tory part enlargement. If Wn << Vn then β(λn) = 1 which means that assimilatory part Wn 
absorbs nearly whole quantity of α(Wn) Wn. If Wn >> Vn then β(λn) ≈ 0 which means that 
non-assimilatory part Vn absorbs nearly whole quantity of α(Wn) Wn. 

Plant growth process described by the system (1) for n = 0, 1, 2, ... is the iteration 
sequence of the following surface transformation (W, V) → (W ̅ , V ̅  ): 
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where: 
V

W
λ   and M = W + V also W, V > 0. We intend to construct the discrete two 

dimensional dynamical system, hence W = λV. 

Its substitution into the formula on the whole plant dry matter:  M = λV + V = (1 + λ)V. 

Facilitates V calculation to obtain 
λ

M
V




1
. 

Substituting it into the formula on W, we have: 
λ

λM
W




1
. 

Taking into account the above two formulas and the system (4) we get: 
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The domain of the functions defined in (5) and (6) is area: 
D = {(M, λ): M > 0, λ > 0} and they describe the transformation: 
ϕ : D → D; (M, λ) → (M ̅  , λ ̅  ). 

For (M, λ)  D is: ϕ        .,,,, DλMλλMMλM   

Denoting:   ...n
 is: 

     λMφλMφλM n
nnnn ,,, 11   . 

As a result, the dynamical system (D, ϕ) was obtained on the collection D which is  
a quarter of surface. 
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RESULTS AND DISCUSSION 

The first obtained result is the fact that the proportion between the assimilatory parts 
and non-assimilatory ones λ̅  in Scots pine tends to the preset value, which is equal to the 
stationary point λ1 of the transformation ϕ. This result may be formulated as the theorem 
[Szlenk and Żelawski 1985] which is preceded by the following definition: 

Definition 1: C1 class is a collection of functions f(x) which are continuous on the 
whole domain and have derivative fʹ(x) in each point of the domain.  

Theorem 2: It is assumed that functions α(W) and β(λ) satisfy conditions (2) and 
(4.3) and belong to the collection of C1 class. Then for all Mn, λn > 0: 

  1,lim λλMλ nn
n




 

where: λ1 – stationary point. 

An additional result obtained is the explicit formula for the stationary point λ1, de-
pending only on environmental factors ratio δ [Szlenk and Żelawski 1985]. Namely, 

according to the stationary point definition, we take:   ., 11 λλMλ   The solution of this 

equation is: 
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where 0 < δ < 1. Besides, with such a definition of β(λ) the experimental values of dry 
matter Mn are very close to the theoretical values [Szlenk and Żelawski 1985]. 

Taking into account that 
1

1
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Substituting the above respective coefficients into the formula for λ1, we have: 
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Calculating from the above λ1, we get: 
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The next result is formulated as a theorem [Szlenk and Żelawski 1985]. 

Theorem 3: If function describing the length of a leaf goes as follows: 

Wa

a
W


 0)( , where a0, a – constants and if function β(λ) belongs to the collec-

tion of a C1 class then for sufficiently large n the whole dry matter Mn of Scots pine 
increases linearly. 
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Fig. 1. Comparison of experimental trend and theoretical values for 

coefficient 
V

W
λ   in Scots pine seedlings grown under la-

boratory conditions with water under high and poor light in-
tensity [Szlenk and Żelawski 1985] 

Rys. 1. Porównanie trendu wartości eksperymentalnych i wartości 

teoretycznych dla współczynnika 
V

W
λ   w sadzonkach so-

sny zwyczajnej wzrastających w warunkach laboratoryj-
nych z udziałem wody przy silnym i słabym natężeniu 
światła [Szlenk i Żelawski 1985] 

 

Fig. 2. Comparison of whole dry matter M growth of Scots pine in re-
lation to time for theoretical and experimental values under 
high and poor light intensity [Szlenk and Żelawski 1985] 

Rys. 2. Porównanie wzrostu całkowitej biomasy M sosny zwyczajnej 
dla wartości teoretycznych i eksperymentalnych przy silnym  
i słabym natężeniu światła [Szlenk i Żelawski 1985] 
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The below graphs obtained by the least squares method present the simulations of 
Scots pine growth dependent on changing light intensity. 

One should mention about another popular growth models and their properties. 
Firstly is presented exponential model which has the following formula: 

    










x

xf exp
 

where: α, β, γ – parameters. 

Although this is not good for application, because it does not occur in real world. 
Next model is the Gompertz model which has the following formula: 

     xexf exp  

where: α, γ, κ – parameters. 

This equation could be applied for every single curve which describes a growth of  
a plant. Particularly could be applied allometric models which have a logarithmic for-
mula as follows: 

lnM = c + α lnD 

where: 
M – total biomass of a plant, 
D – steam diameter at the breast height of a Scots pine, 
c, α – parameters. 

In this model correlation between M and D is high. Hence amount of biomass de-
termines the diameter of a tree. There are some kinds of modifications of this model, for 
example: 

lnM = c + α lnD + βlnH 

where: H – tree height. 

Since correlation between D and M has been high, the addition of H in this model 
only increased the correlation slightly and also reduced slightly the average deviation. 

One could obtain another modification by changing variable H to another one: 

lnM = c + α lnD + βlnWd 

where: Wd – wood density. 

Adding wood density in the model is important in order to estimate the biomass for 
mixed species and big trees, since biomass estimates for larger D trees are more variable 
and have a disproportionately large contribution to forest biomass. 

CONCLUSIONS 

The obtained results of the coefficient λ allow to differentiate two extreme cases that 
have biological justification, i.e. when λ = 0 plant is devoid of assimilatory organs and λ 
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= +∞ can denote a rootless shoot (for example a leaf or stem before rooting). It means 
that Scots pine tends to escape from the state where either assimilatory part Wn or non-
assimilatory Vn are very much out of balance. 

From the Theorem 2, a conclusion follows that growth curve of a plant has a shape 
similar to the letter “S” because according to previous argumentation the stationary 
point λ1, to which the limit of proportion λ ̅ tends, depends on the environmental condi-
tions ratio δ which additionally have great impact on changes in a plant growth process.  

The Theorem 3, which can have only theoretical meaning, by assumption of infinite 
growth concludes that for sufficiently large n the whole dry matter Mn is asymptotically 
equal to the linear function like: f(n) = Pn, where P – constant. 

Interpretation of the above Figures implies that at high intensity of light over the 
time, the proportion λ declines. Whereas, at poor intensity of light, no marked changes 
are observable (Fig. 1). 

Analysing the behaviour of the whole dry matter Mn, the conclusion is that over the 
time it increases exponentially 2-fold faster at high intensity of light as compared to 
poor intensity of light (Fig. 2). 
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MODELOWANIE MATEMATYCZNE  
PROCESU WZROSTU SOSNY ZWYCZAJNEJ (PINUS SILVESTRIS) 

Streszczenie. Sformułowano dwa ogólne podejścia do rozważanego problemu, sygnalizu-
jąc źródła danych eksperymentalnych. Wprowadzono symbolikę matematyczną dla każ-
dej części rośliny i podano, jakie pełni funkcje. Skonstruowano dwuwymiarowy dyskret-
ny układ dynamiczny opisujący proces wzrostu sosny zwyczajnej i poczyniono odpo-
wiednie założenia odnośnie jego składowych. Zauważono, że układ ten jest ciągiem itera-
cji pewnego przekształcenia płaszczyzny, na bazie którego został utworzony układ dyna-
miczny. Dzięki niemu uzyskano kilka istotnych wyników w postaci twierdzeń, uwag  
i wykresów. Uzyskane wnioski dotyczą zachowania się całkowitej biomasy Mn, która ro-
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śnie wykładniczo, a dla dostatecznie dużych n rośnie liniowo. Wnioski opisują również 
stosunek biomas λ ̅, który dąży do obliczonego punktu stałego λ1. 

Słowa kluczowe: dyskretny układ dynamiczny, punkt stały, równanie różnicowe 
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